
FAQ (Frequently Asked Questions)

Detection Engine not working

Issue/Introduction: What to do when the detection engine is not working as expected?

Environment:

ShieldOps Server: Version 1

Resolution:

Prerequisites: you must have shell access to the host, sufficient privileges (run

commands with sudo if required), Docker and Docker Compose available, and know

the absolute path to the ShieldOps project directory.

Check the systemd journal for the worker service

 Run:

 journalctl -u django_worker -e --no-pager

1. What to look for: recent error messages, stack traces, or repeated restart attempts. Note

timestamps and any clear failure reasons (permission denied, missing files, configuration

errors, etc.).

Change to the project directory

 Move to the folder that contains the docker-compose.yml (or compose files) for ShieldOps:

 cd ShieldOps

2. Make sure the compose file defines a worker service (the commands below assume the

service is called worker).

Bring the worker container down

 Stop and remove the worker container to ensure a clean restart:

 docker compose down worker

3. Notes: If your environment uses the old single‑ word binary, the equivalent is docker-
compose down worker.

Restart the systemd service that manages the worker

 Restart the systemd unit that is responsible for the detection engine:

 sudo systemctl restart django_worker

 Wait a few seconds, then check its status:

 sudo systemctl status <backend_service>_worker --no-pager

4. What to expect: the unit should show Active: active (running) or at least exited

with no recent errors. If the unit fails immediately, review the unit's logs again with

journalctl.

Bring the worker containers back up (rebuild if required)

 Start the worker container(s) with a fresh build:

 docker compose up -d --build worker

 Confirm containers are running:

 docker compose ps

Verify logs after restart

 Re-check the journal to ensure the worker is behaving correctly:

 journalctl -u django_worker -e --no-pager

 And to view Docker container logs:

 docker logs shieldops-worker-(1-8)

Confirm detection engine functionality

● Validate that alerts or detection outputs resume as expected.

● If available, run a small test that triggers the detection pipeline and confirm the expected

output.

The Docker services are unhealthy

Issue/Introduction: How to resolve if the docker services are unhealthy?

Environment:

ShieldOps Server: Version 1

Resolution (Step-by-Step):

1. Check the status of your Docker services.

○ First, navigate to the project directory where your docker-compose.yml file is

located.

cd ShieldOps

○ Run the command docker ps. This will display a list of all running containers,

along with their current status, health, and ports.

2. Inspect the service logs.

○ If a service appears unhealthy, use the docker logs <service_name> command

to get more information.

○ The logs will often contain error messages or other clues that can help you

identify the root cause of the problem.

3. Attempt to restart the service.

○ If the logs don't immediately reveal the issue, a simple restart can often fix

transient problems.

○ Run: systemctl restart <service_name>

○ After the restart, check the logs again with docker logs <service_name> to see if

the service is now behaving correctly.

4. Stop and restart the service with Docker Compose.

○ If the service is still unhealthy, you can try stopping and restarting it using Docker

Compose to ensure a clean state.

○ First, stop and remove the unhealthy container: docker compose down

<service_name>

○ Then, start the container again: docker compose up -d <service_name>

5. Examine the docker-compose.yml file.

○ If restarting doesn't work, the problem might be in the command the service is

trying to run.

○ Open your docker-compose.yml file and carefully inspect the command: section

for the service. Make sure it is correct and that the application inside the

container is running the correct process to be considered healthy.

6. Ping the service inside the container.

○ If the service still isn't working, the problem could be a network or connectivity

issue.

○ To test if the service is even active, you can exec into the container and try to

ping it.

docker exec -it <service_name> /bin/bash

bash-4.2$ ping <service_name>

○ This helps determine if the container is functional but not communicating, or if the

service itself is just not active.

Parser is not working

Issue/Introduction: How to resolve if the parser is not working?

Environment

ShieldOps Server: Version 1

Resolution:

● Check the parser logs.

○ Start by inspecting the logs of the parser service itself.

○ Run: docker logs parser

○ What to look for: Look for error messages or indications that the parsing

pipeline has been terminated. If you see a "pipeline terminated" message, the

problem is likely with the parser's configuration.

● Examine the collector logs.

○ If the parser logs show no errors, but no data is being received, the problem

could be with the collector service, which is responsible for gathering the logs.

○ Run: docker logs collector

○ What to look for: Analyze the collector's logs to see if it is successfully collecting

and sending data. This will help you determine if the issue is with the data

ingestion point.

● Inspect Kafka logs and restart the service.

○ If both the parser and collector logs appear normal, the issue might be with

Kafka, which handles the message queue.

○ A simple restart can often resolve a temporary Kafka issue.

○ Try: systemctl restart kafka

○ If the problem persists after the restart, you will need to inspect Kafka's internal

logs for a more detailed diagnosis. These logs can reveal issues like

configuration problems, disk space issues, or other internal errors.

○ Try: docker exec -it collector /bin/bash

followed by kafka-topics.sh --list --bootstrap-server localhost:9092

This should list all the current topics inside kafka, you can further check

individually in topics whether they are actively consuming logs or not by the

following command:

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic

sample_parser --from-beginning --max-messages 5

500 Server Error on UI

Introduction/Issue: How to resolve if a 500 server error occurs and no resources are shown

on the UI?

Environment

ShieldOps Server: Version 1

Resolution:

1. Check the status of the backend server.

○ First, inspect the server's logs to see if it's running and to identify any specific

error messages.

○ Run: journalctl -u django -e --no-pager

○ What to look for: Look for specific endpoints that are failing. Note down any

error messages or stack traces as they are crucial for diagnosing the issue. If an

endpoint is failing, it needs to be resolved by the development team.

2. Wait for services to load.

○ If the logs show no errors but indicate that the server is unreachable, it's possible

that the services are still loading. Sometimes, a brief waiting period can resolve

this. Wait a few moments and refresh the UI.

3. Restart the backend service.

○ If the issue persists, the next step is to restart the backend service. This can

often resolve temporary hang-ups or resource conflicts.

○ Run: sudo systemctl restart django

○ After the restart, inspect the logs again using journalctl -u django -e --no-pager to

confirm that the service is running without errors.

